top of page
AZ-2005 | Develop AI agents using Azure OpenAI and the Semantic Kernel SDK

AZ-2005 | Develop AI agents using Azure OpenAI and the Semantic Kernel SDK

 

Learn how to use the Semantic Kernel SDK to build intelligent applications that automate tasks and perform natural language processing.

 

Prerequisites

  • Experience programming in C#.
  • Visual Studio Code IDE installed.
  • Familiarity with Azure and the Azure portal.
  • Access to Azure OpenAI Services.

 

Course Outline

Module 1: Build your kernel

This module introduces the Semantic Kernel SDK. Learn how the kernel connects code to large language models to extend functionality with generative artificial intelligence.

  • Introduction
  • What is semantic kernel
  • Why use semantic kernel
  • How to build your kernel
  • Exercise - Create your endpoint
  • Exercise - Build a kernel object
  • Knowledge check
  • Summary

Learning objectives

  • Understand the purpose of Semantic Kernel.
  • Understand prompting basics.
  • Learn techniques for more effective prompts.

Module 2: Create plugins for semantic kernel

This module explores Semantic Kernel SDK plugins. Learn how plugins to the SDK are used to accomplish customized tasks and create intelligent applications.

  • Introduction
  • Explore built-in plugins
  • Exercise - Use built-in plugins
  • Optimize language model prompts
  • Exercise - Write your own prompt
  • Exercise - Use personas in prompts
  • Save prompts to files
  • Exercise - Saving prompts to files
  • Knowledge check
  • Summary

Learning objectives

  • Understand the purpose of Semantic Kernel plugins
  • Learn how to use premade plugins
  • Learn how to create your own plugins

Module 3: Give your AI agent skills

This module explores native functions in the Semantic Kernel SDK. Learn how native functions can accomplish customized tasks, effectively giving your AI agent a "skill."

  • Introduction
  • Understand native functions
  • Exercise - Create native functions
  • Knowledge check
  • Summary

Learning objectives

  • Understand native functions in the Semantic Kernel SDK.
  • Learn how to create native function plugins.
  • Learn how to combine prompts with native functions.

Module 4: Combine Prompts and Functions

This module demonstrates how to combine functions and prompts with the Semantic Kernel SDK. Nesting functions within prompts can allow your code to complete tasks large language models can't typically complete on their own.

  • Introduction
  • Use functions in prompts
  • Exercise - Use nested functions for song suggestions
  • Knowledge check
  • Summary

Learning objectives

  • Practice creating plugins with the Semantic Kernel SDK.
  • Learn how to combine prompts with native functions.

Module 5: Use intelligent planners

This module introduces different ways to automatically invoke functions using the Semantic Kernel SDK. Learn how planners can generate plans to accomplish tasks and how to fine-tune planners to optimize performance.

  • Introduction
  • Learn about AI planners
  • How to use a planner
  • Exercise - Create a planner
  • Exercise - Use a plan template
  • Optimize your planners
  • Automatically invoke functions
  • Exercise - Automatically invoke functions
  • Knowledge check
  • Summary

Learning objectives

  • Understand planners in the Semantic Kernel SDK.
  • Learn how to use planners to automate function calls.
  • Learn how to optimize planners.
  • Learn how to use Semantic Kernel SDK to automatically invoke functions.

Module 6: Guided project - Create an AI travel agent

This module guides you through the steps required to develop a proof-of-concept AI Travel assistant with the Semantic Kernel SDK. By the end of this module, you complete a small chatbot application.

  • Introduction
  • Prepare for guided project
  • Exercise - Create a currency converter
  • Exercise - Route user intent
  • Exercise - Provide context cues
  • Knowledge check
  • Summary

Learning objectives

  • Create plugins for the Semantic Kernel.
  • Create prompts to elicit the best responses from the large language model (LLM).
  • Manipulate LLM responses to guide the execution of code.
  • Automatically invoke the correct plugins to complete tasks.

 

Descargue el temario para conocer el detalle completo de los contenidos.

 

Debido a las constantes actualizaciones de los contenidos de los cursos por parte del fabricante, el contenido de este temario puede variar con respecto al publicado en el sitio oficial, sin embargo, Netec siempre entregará la versión actualizada de éste.

AZ-2005 | Develop AI agents using Azure OpenAI and the Semantic Kernel SDK

SKU: MICROSOFT-AZ-2005
bottom of page